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Abstract
Waves in a two-dimensional domain with Robin (mixed) boundary conditions
that vary smoothly along the boundary exhibit unexpected phenomena. If
the variation includes a ‘D point’ where the boundary condition is Dirichlet
(vanishing wavefunction), a variety of arguments indicate that the system is
singular. For a circle billiard, the boundary condition fails to determine a
discrete set of levels, so the spectrum is continuous. For a diffraction grating
defined by periodically varying boundary conditions on the edge of a half-
plane, the phase of a diffracted beam amplitude remains undetermined. In both
cases, the wavefunction on the boundary has a singularity at a D point, described
by the polylogarithm function.

PACS numbers: 02.30.Tb, 02.30.Jr, 03.65.Ge

1. Introduction

The most general local Hermitian restrictions on wavefunctions in the presence of a hard wall
are Robin, that is mixed, boundary conditions (Gustavson and Abe 1998), in which a real
linear combination of the wavefunction and its normal derivative vanishes. The more familiar
Dirichlet (vanishing wavefunction) and Neumann (vanishing normal derivative) conditions
are special cases. In previous implementations (Sieber et al 1995, Berry and Ishio 2002), the
boundary conditions have been either the same at all points on the boundary, or piecewise
constant (for example, Dirichlet on an external billiard boundary and Neumann on an internal
symmetry line, as in Berry (1981a)).

Here we will study two systems where the Robin conditions vary smoothly along
the boundary of a two-dimensional domain within which a particle moves freely. Thus
monochromatic waves with energy E satisfy

∇2ψ + k2ψ = 0, k2 = E. (1.1)
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In the first system, the domain is the interior of the unit circle with coordinates {r, φ}, and the
boundary condition is

κ(φ)ψ(1, φ) +
∂

∂r
ψ(1, φ) = 0, (1.2)

where the function κ(φ) is real and 2π periodic. Therefore this system is a circle billiard, and
we are interested in its bound states. In the second system, the domain is the upper half-plane
y � 0, and the boundary condition on the x-axis for waves ψ(x, y) is

κ(x)ψ(x, 0) − ∂

∂y
ψ(x, 0) = 0, (1.3)

with the sign reflecting the same choice of normal (outwards) as in (1.2). If again the function
κ(x) is chosen to be real and 2π periodic, the x axis corresponds to a diffraction grating for
plane waves incident from y > 0, and we study Bragg-diffracted beams. It is easy to show
that requiring κ to be real is equivalent to the Hermiticity requirement that there is no current
across the boundary.

We will often take κ proportional to the wavenumber k. As well as simplifying many of
the formulae, this compensates semiclassically for the increase of the normal derivatives in
(1.2) and (1.3); otherwise, almost all the high-lying (large k) states would effectively satisfy
Neumann conditions. More precisely, when κ is proportional to k, (1.1) and (1.2) correspond
not to a single Hamiltonian but to a family, in which κ depends on a parameter A. In the
following, what we refer to as ‘the spectrum’ corresponds to the intersections of the line A = k
with the curves representing eigenvalues λ(A) in the plane parameterized by

√
λ and A.

Zeros of κ correspond to Neumann (N) points, and poles to Dirichlet (D) points. The
simplest case exhibiting both, to be explored in detail later, is

κ(φ) = k cot
(

1
2φ

)
. (1.4)

(Notwithstanding the half-angle, this is single valued-round the circle boundary, and with
φ → x the analogous grating is still 2π periodic.) There is a single D point, at φ = 0, and a
single N point, at φ = π .

For any choice of κ(φ), the circle eigenstates are combinations of Bessel functions whose
order n represents angular momentum; these are conveniently written as

ψ(r, φ) =
∞∑

n=−∞
an exp(inφ)

Jn(kr)

Jn(k)
, (1.5)

with the possible values of k determined by the application of (1.2).
In the grating case, it suffices for present purposes to consider only normal incidence, for

which the total wave is

ψ(x, y) = exp(−iky) +
∞∑

n=−∞
an exp{i(nx + krny)}, (1.6)

where now n denotes transverse linear momentum and the amplitudes an of the diffracted
beams are determined by the application of (1.3), and

rn ≡
√

1 − n2/k2, (1.7)

in which the square root is positive real for the propagating waves |n| < k, and positive
imaginary for the evanescent waves |n| > k.

It might seem that varying κ merely adds complication to the cases of constant κ , with
the innocuous effects of simply modifying the discrete spectra for the circle and the Bragg
amplitudes for the grating. And this is indeed what happens if there are no D points. But
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the presence of D points has a radical effect: it introduces a singularity into the Hamiltonian,
which no longer generates discrete eigenvalues in the circle and fails to determine the Bragg
amplitudes for the grating. This was unexpected and at first appeared paradoxical. Our aim
here is to demystify what we will call the D singularity.

Section 2 revisits the familiar case of constant κ , emphasizing the peculiar nature of the
limit κ → −∞, that is, approaching Dirichlet from the negative side. In section 3 we give
some heuristic semiclassical reasons for regarding D points on the boundary as singularities,
likely to have a dramatic effect.

Section 4 is a detailed study of the case (1.4) for the circle, which is expected to contain
all essential features of more general billiards with D points. The spectrum of positive-energy
states appears to be continuous; and the strategy of regarding the billiard with a D point as the
limit of billiards with no D points, for which the spectrum is discrete, also fails to determine
a discrete spectrum. The wavefunctions in the bound continuum states are well behaved
everywhere except at the D point on the boundary, at which they have singularities described
by the polylogarithm function, whose relevant asymptotics is developed in appendix A.
Section 5 concerns boundaries without D points, where as expected the spectrum is discrete,
but with some interesting features. The case where two D points coalesce is delicate: as
we show in appendix B, the spectrum can be continuous or discrete, depending on a sign
associated with the singularity.

Section 6 considers the diffraction grating with varying boundary conditions; if there is
a D point, as in (1.4), the amplitudes of the diffracted beams in the wave (1.6) can all be
calculated completely (after imposing Hermiticity on the Hamiltonian) except for the phase
of one of them, which remains undetermined, even if the grating is regarded as the limit of
one without D points.

The continuum reported here for the circle billiard is unfamiliar but not unprecedented.
Smilansky (2004) showed similar behaviour in a quantum system with two freedoms, in which
a particle moves in a harmonic oscillator potential coupled to a delta function; his conclusions
were supported by rigorous analysis by Solomyak (2004). That example, whose main purpose
was to illustrate a class of models exhibiting irreversibility, does not involve the D point
singularity, with associated polylogarithm behaviour, that we are emphasizing here.

In order to keep this already long paper as concise as possible, we have omitted many
technical details of the arguments. Moreover, we regard this paper as work in progress, that is
exploratory: raising more issues than we have been able to settle here.

2. Constant Robin parameter

Here the importance of the D singularity becomes evident for the circle as κ → −∞, that is
as the Dirichlet condition is approached from below. For constant κ , the circle billiard modes
are

ψnm (r, φ) = exp(inφ)Jn(knmr), (2.1)

where the eigenvalues knm are the solutions of

Fn(Enm) ≡
√

E
J ′

n(
√

Enm)

Jn(
√

Enm)
= −κ. (2.2)

Figure 1 shows the functions Fn(E), and some of the eigenvalues, given as intersections with
the line −κ . The states with n �= 0 are doubly degenerate because Fn(E) = F−n(E). For
κ > 0 all states have positive E.
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Figure 1. Positive and negative levels (white circles) and surface mode (black circle) for negative
Robin parameter κ (dashed) for the Bessel functions Jn, 0 � n � 4, calculated from (2.2).

When κ < 0, then, as is known (Balian and Bloch 1970), there are states with negative E.
To find the number of such states, we note that

Fn(−E) =
√

E
I ′
n(

√
E)

In(
√

E)
(2.3)

takes the zero-energy values

Fn (0) = n. (2.4)

Thus the number of negative-energy states is 2int(−κ), and so grows without limit as
κ → −∞.

This behaviour is consistent with the Weyl rule (Baltes and Hilf 1976), in which the Robin
parameter affects the boundary term according to (Sieber et al 1995)

N (k) = 1

4
k2 +

1

2
k

[
2

(√
1 +

(κ

k

)2
− κ

k

)
− 1

]
+ curvature term + · · · . (2.5)

(Note that as k → ∞ this reduces to the Neumann counting function, unless κ is proportional
to k as mentioned previously.) The number N (0) of negative-energy states is given by

N (k) → 2|κ|�(−κ) as k → 0, (2.6)

which diverges as the Dirichlet limit is approached from below, exactly as described above.
We note that the lowest positive-energy states for large negative κ (e.g., the black circle

in figure 1) are concentrated near the boundary, because

Jn(kr) ≈ Jn(k)rn ≈ Jn(k) exp{−|n|(1 − r)} (|n| 	 1, 1 − r 
 1). (2.7)

These states are the analogues of whispering-gallery modes for positive κ .

3. Semiclassical analysis for varying Robin parameter

For the circle billiard, κ has a simple pole at the simplest D point φD, and we can take

κ (φ) ≈ kD

φ − φD
. (3.1)
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In this case, the Weyl rule (2.5), generalized to incorporate variations of the boundary
conditions, namely

N (k) = 1

4
k2 +

1

4π
k

∫ 2π

0
dφ

⎡
⎣2

⎛
⎝
√

1 +

(
κ(φ)

k

)2

− κ(φ)

k

⎞
⎠ − 1

⎤
⎦ + · · · , (3.2)

predicts infinitely many positive-energy states between any two wavenumbers k1 and k2:

N (k2) − N (k1) ≈ 1

4

(
k2

2 − k2
1

)
+

1

2
(k1 − k2) + (k1 − k2)

D

π

∫ φD

0

dφ

(φ − φD)
= ∞. (3.3)

This is the first suggestion that the spectrum is continuous when there is a D point.
A physical picture of the origin of the D singularity for the circle follows from the

observation, easy to check, that the general boundary-varying Robin condition is equivalent
to a Neumann boundary, to which is added, just inside the boundary, a δ-function potential
whose strength varies round the boundary. Explicitly, the potential for the circular billiard is

V (r, φ) = κ(φ)δ(r − 1 + ε) (3.4)

(this idea is reminiscent of the single-layer potential introduced by Balian and Bloch (1970)).
Regarding the δ-function potential as the limit of a Gaussian, it is clear that a D point
corresponds to a singularity where a potential barrier is infinitely high on the κ > 0 side,
and a potential well is infinitely deep on the κ < 0 side; application of the Weyl rule to
the potential well again predicts infinitely many states between any two positive energies,
implying a continuous spectrum.

The following argument suggests that wavefunctions on the boundary will be singular at
D points, and applies both to the circle and the grating. Consider waves with large momenta
|n| 	 k. These are evanescent, that is, concentrated near the boundary (cf (2.7)), and, to satisfy
the wave equation, are approximately local plane waves. In Cartesian coordinates,

ψ(x, y) = exp(inx) exp{−y
√

n2 − k2}
≈ exp(inx) exp{−y|n|}. (3.5)

Direct application of the boundary condition (1.3) gives

|n| + κ = 0, (3.6)

so as expected these states can exist only when κ < 0. When κ varies, the natural WKB
generalization of (3.5) leads, with (3.1) with φ → x, to a singularity:

ψ±(x, 0) ≈ exp

{
±i

∫ x

dx ′|n(x ′)|
}

= exp{∓ikD log |x − xD|}�(D(xD − x)), (3.7)

where ± denotes the sign of n. Later we will show that the exact wavefunctions have precisely
this singularity: oscillating infinitely fast as the D point is approached through negative κ

values, discontinuously changing to a smooth function where κ is positive.
For the last of our preliminary indications that D points are special, consider reflection

from the boundary, for non-evanescent waves, that is |n| < k, in the semiclassical limit k 	 1.
In this case, we can regard the (locally straight) boundary as the x axis, with waves in direction
θ0 (measured from the normal) incident from positive y.

When κ is constant, the total wave (incident+reflected) is

ψ(x, y) = exp{ik(x sin θ0 − y cos θ0)} + R(κ, θ0) exp{ik(x sin θ0 + y cos θ0)}, (3.8)
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with the reflection coefficient easily derived by the application of (1.4) to be

R(κ, θ0) = − (κ +ik cosθ0)

(κ −ik cosθ0)
≡ exp{iγ (κ, θ0)}. (3.9)

When κ varies, we can still expect that short-wave reflections will be locally given by the
same formula (a more careful analysis confirms this), so the wave in the boundary will be

ψrefl(x, 0) ≈ exp

{
i
∫ x

dx ′kx(x
′)
}

, (3.10)

in which the local transverse wavenumber is

kx(x) = k cos θ0 +
∂γ (κ(x), θ0)

∂x
. (3.11)

The second term represents the momentum transferred to the reflected wave by the variation of
the boundary condition, since this variation breaks the translational symmetry and momentum
along the surface will no longer be conserved. The reflection will no longer be specular, and
the momentum kick will be

�kx = ∂γ

∂x
= − 2κ ′(x)k cos θ0

κ(x)2 + k2 cos2 θ0
. (3.12)

(Note that this is independent of k if κ is proportional to k.) This kick couples different angular
momenta in the circle billiard, and generates Bragg-diffracted beams in the grating.

The sign of the kick depends on the sign of the derivative κ ′(x). On the average,
representing the average angular-momentum kick in the circle case, the kick is

〈�kx〉 = 1

2π

∫ 2π

0
dx

∂γ

∂x
= −k cos θ0

π

∫
C

dκ

κ2 + k2 cos2 θ0
= − 1

π

∫
C

dQ

Q2 + 1
= winding number of R(κ(x), θ0) as x increases by 2π. (3.13)

In this formula, C is the path traversed by κ (x) as x increases by 2π . If there are no D points,
C is a series of self-retracing segments, and the average kick is zero. But if there are D points
then C can consist of segments −∞ < Q < +∞, each contributing unity to (3.13). Therefore
D points are necessary in order for there to be a net momentum kick. In the circle case, this will
result in reflected waves getting ever closer to glancing incidence, eventually (as kx increases
through k) becoming evanescent, that is concentrated near the boundary. In the grating, it will
generate powerful evanescent waves. Note that the average kick (3.13) is independent of both
θ0 and k; it depends only on the topology of κ(x).

In section 5 we will explore the implications of nonspecularity in more detail.

4. Spectrum with a Dirichlet singularity

An easy calculation shows that with the boundary condition (1.4) the coefficients in the
superposition (1.5) satisfy the two-term recurrence relation

an+1 = −an

(1 − iρn)

(1 + iρn+1)
, (4.1)

where

ρn(k) ≡ J ′
n(k)

Jn(k)
. (4.2)

All an can be determined starting from any one of them, and it is convenient to choose a0 =
1. Then

an = (−1)n
(1 − iρ0)

(1 + iρn)

n−1∏
m=1

(1 − iρm)

(1 + iρm)
. (4.3)

6



J. Phys. A: Math. Theor. 41 (2008) 135203 M V Berry and M R Dennis

With these an, we will soon see that the series (1.5) converges for any k, so the spectrum
is continuous (even though the infinite bidiagonal determinant associated with (4.1) never
vanishes).

It follows from (4.1) that

a−n = a∗
n, (4.4)

so the wavefunctions can be chosen to be real (as expected since the general boundary
conditions (1.3) define a class of real operators, preserving the time-reversal symmetry), and
given by

ψ(r, φ) = J0(kr)

J0(k)
+ 2 Re

∞∑
n=1

an exp(inφ)
Jn(kr)

Jn(k)
. (4.5)

To understand these wavefunctions, we must consider the convergence of the series. For
n < k, that is nonevanescent angular-momentum contributions, the an in (4.3) oscillate as n
varies. In the evanescent regime, use of

ρn(k) ≈ |n|
k

(|n| 	 k) (4.6)

leads to the following asymptotics of (4.3) in terms of an exactly calculated an0 :

an ≈ an0

n0

n

n−1∏
s=n0+1

s + ik

s − ik
≈ an0

(n0

n

)1−2ik
(n 	 k, n0 	 k). (4.7)

Incorporating this into the tail of the series (4.5) gives the wavefunction as

ψ(r, φ) = J0(kr)

J0(k)
+ 2 Re

n0∑
n=1

an exp(inφ)
Jn(kr)

Jn(k)
+ 2 Re an0n

1−2ik
0

∞∑
n=n0+1

rn

n1−2ik
exp(inφ).

(4.8)

The tail of the series can be expressed in terms of the polylogarithm function Liα(β) of complex
order α and argument β:

∞∑
n0+1

rn

n1−2ik
exp(inφ) = Li1−2ik(r exp(iφ)) −

n0∑
n=1

rn

n1−2ik
exp(inφ). (4.9)

Inside the circle, that is when r < 1, the series converges, and ψ is a smooth function of
position. On the boundary r = 1, asymptotics of Li, given in appendix A, shows that ψ is
smooth everywhere except at the D point φ = 0, where it has precisely the singularity of
the type (3.7) anticipated semiclassically. This singularity can also be obtained directly by
replacing the tail of the series in (4.8) by an integral and approximating this using end-point
asymptotics.

We note the intriguing fact that at its singularity, corresponding to the D point on the
circle, the polylogarithm is given by the Riemann zeta function on the edge of the critical strip:

Li1−2ik(1) = ζ(1 − 2ik). (4.10)

This suggests that the requirement that the Dirichlet singularity is suppressed generates the
Riemann zeros as resonances.

Figure 2 shows three wavefunctions, smooth almost everywhere but exhibiting oscillations
near the boundary that get faster as the D point is approached from the negative side.
Figure 3(a) shows the wavefunction on the boundary, with the series (4.5) simply truncated
after 50 terms; figure 3(b) shows the effect of the polylogarithm regularization (4.8).
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Figure 2. Contour plots of wavefunctions with boundary condition κ(φ) = k cot(φ/2), for (a)
k = 1.4; (b) k = 3.4; (c) k = 10. The nodal lines are the thick curves.

These wavefunctions have been constructed to satisfy the boundary condition (1.4), and it
is important to explore how accurately they do so. To examine this, we computed kψ/∂rψ and
compared this with the theoretical value − tan(φ/2). As figure 4(a) illustrates, the accuracy is
poor, even after including 500 terms of the regularized series for the same k as in figure 3. The
reason is that on the boundary the normal derivative ∂rψ is more singular than ψ itself, implying
that although ψ converges the normal and tangential components of the local momentum do
not. Just inside the boundary, however, the boundary condition is well satisfied, as figure 4(b)
shows. This double regularization—polylogarithm tail of the angular-momentum series, and
approaching the boundary from r < 1—deserves further study.

In a further attempt at regularization, we can regard the boundary condition (1.3) as the
limit ε → 1 of

κ(φ) = k
sin φ

1 − ε cos φ
. (4.11)
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Figure 3. Boundary wavefunction ψ(1,φ) with boundary condition κ(φ) = k cot(φ/2), for k =
3.4: (a) including 50 terms of unregularized series (4.3); (b) as (a), including the polylogarithm
regularization (4.8).

As figure 5 illustrates, there are no D singularities for ε < 1; the D singularity in (1.4) at φ

= 0 develops from an N point as ε → 1 from below. For any fixed ε < 1, the coefficients
an in (1.5) satisfy a three-term recurrence relation, corresponding to an infinite tridiagonal
matrix whose determinant vanishes at a discrete set of real k which are the billiard eigenvalues.
Numerically, truncation to an N × N matrix gives a determinant whose zeros converge as N
increases. But the convergence gets worse as ε → 1, and when ε = 1 there is no convergence,
that is, the zeros depend on the truncation. Therefore the regularization (4.11) fails.

Nevertheless, it is interesting to examine briefly the three-term recurrence relation for
ε = 1, namely

an−1(1 − iρn−1) + 2ianρn − an+1(1 + iρn+1) = 0, (4.12)

with ρn defined by (4.2). As is easily confirmed, this is satisfied by any set of coefficients
satisfying the two-term relation (4.1). But (4.12) has additional solutions. To study them, we
note that if we write (4.1) in the form

Fn ≡ an(1 + iρn) + an−1(1 − iρn−1) = 0, (4.13)

then (4.12) can be written as

Fn+1 = Fn. (4.14)

Thus Fn is a intriguing conserved quantity, whose value for the solution of (4.1) is zero but
which in general can take any value F. However, asymptotic analysis, not given here, shows
that when F �= 0 the coefficients an tend to a constant for |n | 	 k, so the convergence

9
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(b)

0

∂ ∂( )
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Figure 4. Dashed curves: computation of kψ/∂rψ for the state with k = 3.4 with boundary
condition κ(φ) = k cot(φ/2), including 500 terms of the regularized series (4.8); full curves:
theoretical value − tan(φ/2) (a) on the boundary r = 1; (b) close to the boundary r = 0.98.

Figure 5. Full curve: boundary condition function (1.4) with a Dirichlet singularity at φ = 0.
Dashed curve: condition (4.11) for ε = 0.95, which has no Dirichlet singularity.

of the series (4.5) for the wavefunction on the boundary is worse than that leading to the
polylogarithm (4.8).

The spectrum is continuous; nevertheless, the states ψ are square-integrable. This follows
from (1.5), from which∫ 1

0
drr

∫ 2π

0
dφ|ψ(r, φ)|2 = 2π

∞∑
−∞

|an|2
∫ 1

0
drr

J 2
n (kr)

J 2
n (k)

, (4.15)
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where ∫ 1

0
drr

J 2
n (kr)

J 2
n (k)

→ 1

2|n| (|n| 	 k) (4.16)

and the asymptotic form (4.7), which implies

|an| → constant

n
(|n| 	 k). (4.17)

5. Spectrum without a Dirichlet singularity

If there are no D points, the spectrum is discrete as in the more familiar case of constant κ ,
even in the presence of N points. As an example, in this section we explore the case

κ(φ) = −k cos φ, (5.1)

which has N points at φ = ±π/2 (up to a rotation, this is (4.11) with ε = 0). This operator
possesses reflection symmetry about the x axis, and the states fall into parity-even (e) and
parity-odd (o) classes, so that, in the representation (1.5)

ψe(r, φ) = a0
J0(kr)

J0(k)
+ 2

∞∑
n=1

an

Jn(kr)

Jn(k)
cos(nφ)

(5.2)

ψo(r, φ) = 2
∞∑

n=1

an

Jn(kr)

Jn(k)
sin(nφ).

In both classes, the coefficients satisfy the three-term recurrence relation

an+1 + an−1 − 2anρn(k) = 0, (5.3)

where ρn is defined in (4.2).
However, the initial conditions are different:

a0 = 1, a1 = ρ0(k) (ψe)

a0 = 0, a1 = 1 (ψo)

}
. (5.4)

The wavenumbers k of eigenstates are determined by the vanishing of the tridiagonal
determinant underlying (5.3), but it is convenient here to employ the equivalent condition
that the coefficients must converge as n → ∞. By (4.6), the asymptotic coefficients satisfy

an+1 + an−1 − 2n

k
an = 0 (n 	 k). (5.5)

The solution (Abramowitz and Stegun 1972) is a superposition of J and Y Bessel functions:

an ≈ A(k)Jn(k) + B(k)Yn(k) (n 	 k). (5.6)

Since Yn(k) grows factorially with n, eigenvalues are determined by the vanishing of the
coefficient B(k), which in turn is given in terms of any pair of asymptotic an by

B(k) = 2

πk
lim

n→∞[an(k)Jn+1(k) − an+1(k)Jn(k)]. (5.7)

As figure 6 illustrates, the zeros are easily identified. It is convenient to represent energy
in the form

E ≡ 1
8k2, (5.8)

so that the mth level in each class, according to the area term in the Weyl rule, is approximately
Em ∼ m. Figure 7 shows two representations of a high-lying state. There is a strong
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Figure 6. Coefficient B in (5.7) for even states with boundary condition κ(φ) = −k cos φ, as a
function of wavenumber k = √

(8E). The negative spikes correspond to eigenstates.
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Figure 7. Even state E110 = 97.206 986 712 for boundary condition κ(φ) = −k cos φ: (a) contour
plot; (b) 3D plot.
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Figure 8. Dashed curves: computation of ∂rψ/kψ on the boundary for the 110th even state; full
curves: theoretical value cos φ (a) energy E110; (b) E110 + 10−8.

pattern, resembling a displaced Bessel mode and therefore suggesting near-integrability, but
close examination shows that the nodal lines do not cross, so the states are not separable.
Figure 8(a) shows that the boundary condition (5.1) is satisfied, but, as figure 8(b) shows, the
agreement is destroyed by only a slight deviation (10−8 of the mean spacing).

The eigenstates are those of a semicircle billiard with the boundary condition (5.1) on
the curved part of the boundary and Neumann (even states) or Dirichlet (odd states) on the
diameter. Thus, from (2.5) applied to the present case, the first two terms of the Weyl series
are

N (E) = E +

√
8E

2π

(
1

4

∫ 2π

0
dφ(2

√
1 + cos2 φ − 1) ± 1

)

= E +

√
8E

2π

(
2
√

2E

(
1

2

)
− π

2
± 1

)
= E +

√
E(1.012 59 ± 0.450 16), (5.9)

where E denotes the complete elliptic integral and +/− refer to the even/odd states.
The second term of the Weyl series implies that there are more even than odd states. The

extra even states generalize the n = 0 Neumann states in (2.1), which have no odd counterparts.
Unexpectedly, these ‘rogue states’ have an explicit analytic form. In terms of the zeros j1,n of
the Bessel function J1, the rogue energy En and wavefunction ψn of the nth such state are

En = 1
8j 2

1,n,

ψn(r, φ) = J0(j1,nr) +
J0(j1,n)

J ′
1(j1,n)

J1(j1,nr) cos φ, (5.10)
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Figure 9. Thick curve: spectral staircase N (E) for even states with boundary condition κ(φ) =
− cos φ, as a function of E corresponding to wavenumber k = √

(8E); dashed curve: N(E) = E,
corresponding to the area term in the Weyl series; full thin curve: N (E) = E + 0.571 43

√
E,

corresponding to the area+perimeter term.

and it can be confirmed by direct calculation that these satisfy the boundary condition (5.1).
(These rogue states are not captured by the numerical search technique based on (5.7), or the
analogous tridiagonal determinant, for a technical reason associated with the appearance of
J1(k) in the denominator in (5.2)).

In this way, we identified the lowest 122 even states. Comparison with (5.9) (figure 9)
shows reasonable agreement, although the slight shortfall leaves open the possibility that
some of the additional even states might have been missed (the next term of the Weyl series,
arising from the curvature and corners of the semicircle, is too small to affect the comparison).
Analogous calculations for the odd states are perfectly in agreement with (5.9).

As a preliminary indication of the spectral statistics, figure 10 shows the cumulative
distribution

C(E) ≡
∫ S

0
dS ′P(S ′) (5.11)

of the nearest-neighbour level spacings S. The reasonable agreement with the Poisson
distribution P(S) = exp(−S) suggests that the states are not chaotic, or at most weakly so. To
identify the spectral statistics definitively (for example, to distinguish between Poisson and
semi-Poisson), more data would be needed.

A heuristic explanation is based on the nonspecularity of reflection of local plane waves,
discussed in section 3 (equation (3.11)). This implies that for particles incident at φ0 on the
boundary the incidence and reflection angles θ0 and θ1 are related by the law

sin θ1 = sin θ0 +
1

k

∂γ

∂x
= sin θ0 − 2κ ′(x)k cos θ0

k(κ(x)2 + k2 cos2 θ0)
. (5.12)

Thus the nonspecularity is of order 1/k. Although interpreting this in classical terms is
problematic, it does seem reasonable to take it seriously, at least for the orbits of length less
than k (corresponding to the Heisenberg time connected to the level spacing). Preliminary
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Figure 10. Thick curve: cumulative spacings distribution C(S) ≡ ∫ S

0 dS′P(S′) of first 122 even
levels of boundary condition κ(φ) = − cos φ; thin curve: Poisson distribution 1 − exp(−S).

exploration of the (non-symplectic) billiard boundary map determined by (5.12), whose phase
space (Berry 1981b) has angular momentum sinθ and coordinate φ, suggests that there is very
little chaos. Our tentative conclusion is that the quantum system determined by (5.1) is only
weakly nonintegrable.

A familiar phenomenon for two-dimensional systems is that energies of states belonging
to different symmetry classes can coincide. In the system (5.1), this cannot happen (except
for the rogue states (5.10)). This no-crossing phenomenon is familiar in one-dimensional
systems, and can be understood in a similar way, starting from the three-term recurrence
relation (5.3). We can think of (5.3) as a linear map in the plane {an, an+1}, with even and
odd levels determined by different initial conditions (5.4) representing lines in the plane. The
vanishing of the coefficient B(k) (equation (5.7)) cannot occur simultaneously for the even and
odd states. An implication is that in generalizations of (5.1) for which the boundary condition
depends on a parameter and the coefficients are still determined by a three-term recurrence
relation, there can be no level crossings; an example is (4.11) with 0 � ε < 1.

To further clarify the significance of the absence of D points in (5.1), we briefly consider
the analogous boundary condition with D points but no N points:

κ(φ) = − 1

k cos φ
. (5.13)

With the slightly modified representation

ψ(r, φ) =
∞∑

n=−∞
bn exp(inφ)

Jn(kr)

J ′
n(k)

. (5.14)

The recurrence relation analogous to (5.3) is

bn+1 + bn−1 = 2
bn

ρn(k)
≈ 2bn

k

n
(n 	 k). (5.15)

Note that ρn(k) has been replaced by 1/ρn(k). This is crucial, because the asymptotic solution
replacing (5.6) is

bn ∼ A(+i)n + B(−i)n, (5.16)
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which cannot generate discrete eigenvalues. The difference between (5.6) and (5.16)
is analogous to the distinction between classically forbidden and allowed regions in one
dimension, which similarly underlies discrete and continuous spectra in one dimension.

As in previous sections, we included the eigenvalue k in (5.1) in order to simplify the
formulae. We have also studied the case in which k is replaced by a constant parameter A,
representing a family of Hermitian Hamiltonians. In the analogue of the Weyl formula (5.9),
obtained from (3.2), the perimeter term does not vanish at k = 0; its value (for the even and odd
states) is A/π , and represents the negative-energy states. Numerical computations confirm
that if these are included in the count, the total number of even or odd states again agrees with
predictions of the Weyl formula. The rogue states (5.10) now exhibit the unexpected feature
that their energies are independent of the parameter A.

The relation between the case considered in this section, where there is no D singularity
and the spectrum is discrete, and that of section 4, where the D singularity leads to a continuum,
is clarified by considering the case where two D points coalesce, for example

κ(φ) = εk

sin2
(

1
2φ

) , ε = ±1. (5.17)

This is studied in appendix B, where we show that the spectrum is continuous for ε = −1
and discrete for ε = +1, emphasizing what we have already discovered, that the singularity is
associated with the approach to the D point from the negative side, that is κ → −∞.

6. Boundary-varying gratings

For most of this section, it will suffice to consider the grating wave (1.6) and (1.7) for normal
incidence. With the boundary condition (1.4) with x replacing φ, the coefficients satisfy the
inhomogeneous two-term recurrence relation

an+1(1 + rn+1) + an(1 − rn) + 2δn,0 = 0. (6.1)

Consider first the forward-diffracted beams, that is n > 0. Noting r0 = 1, forward recursion
gives

a1 = − 2

1 + r1
, an>0 = − 2

(1 + rn)

n−1∏
j=1

(rj − 1)

(rj + 1)
. (6.2)

The intensities of these forward beams decrease rapidly until the grazing-emergence beam
n = int [k]. For the deep-evanescent waves n 	 k, use of

rn ∼ i
|n|
k

(|n| 	 k) (6.3)

(cf (4.6)), leads to (cf (4.7))

an ≈ an0

(n0

n

)1−2ik
(n 	 k, n∗ 	 k), (6.4)

and thence, through the positive-n terms in (6.2), to a polylogarithm singularity in the boundary
wave ψ(x, 0).

A difficulty arises with the terms n � 0, that is, the beams diffracted towards negative x.
The recurrence relation (6.1) gives

a−1 = 2a0

r1 − 1
, a−n = 2a0

(rn − 1)

n−1∏
j=1

(rj + 1)

(rj − 1)
(n > 1), (6.5)
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Figure 11. Thick curve: modulus |a0(k)| of a specular-reflected grating amplitude, calculated from
(6.7); thin curve: the approximation (6.8).

leaving a0 undetermined. The modulus |a0| can be determined by Hermiticity, in the form of
the requirement that the incident and scattered y components of the current are equal. The
condition, involving only the propagating waves with |n| < k, is∑

|n|<k

|an|2rn = 1. (6.6)

It then follows from (6.5) after some calculation that

|a0| =
int k∏
n=1

∣∣∣∣ rn − 1

rn + 1

∣∣∣∣
2

. (6.7)

For k < 1, |a0| = 1, as is obvious since n = 0 is the only propagating diffracted beam.
As k increases, |a0| decreases rapidly. This decrease can be approximated by using the Euler–
Maclaurin formula to replace the sum in the log|a0| by an integral. The result (replacing n/k
by the integration variable t) is

|a0| ≈ exp

{
2k

∫ 1

1/2k

dt log

[
1 − √

1 − t2

1 +
√

1 − t2

]}
≈ (4ke)2 exp(−2πk). (6.8)

As figure 11 shows, this is an excellent approximation for all k > 1.
The asymmetry between Bragg beams with positive and negative n for this case of

normal incidence, indicating a lop-sidedness of the diffraction, implies that the grating violates
Friedel’s law of crystallography, according to which the diffracted beam intensities would be
invariant under the replacement of κ(x) by κ(−x). Such asymmetry also occurs in an exactly-
solvable model of a non-Hermitian grating, and in echelette (blazed) gratings (Berry 1998,
Born and Wolf 2005).

It follows from (6.7) and (6.8) that the an for n � 0 are very small for large k, that is in
the semiclassical (geometrical optics) regime. These small values are not captured by a crude
argument based on Kirchhoff diffraction, which predicts zero. In this approximation, the
reflected wave is given simply by the incident wave at y = 0 (in this case ψ inc = 1) multiplied
by the local reflection coefficient (3.9). For the present case (θ0 = 0), this gives

ψrefl,Kirchhoff(x, 0) = −
(
cot 1

2x + i
)

(
cot 1

2x − i
) = − exp(ix), (6.9)
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Figure 12. Oscillatory curve: coefficients an for k = 10.2, computed by inversion of the matrix in
(6.10), truncated at |n| = 400; the oscillations are artefacts depending on the truncation. Smooth
curve: coefficients computed analytically from (6.2) and (6.5) with |a0| calculated from (6.7).

corresponding, according to (1.6), to the single diffracted beam n = 1 with a1 = −1, consistent
with (6.2) and (6.5) for k 	 1 assuming that a0, and hence all the negative coefficients, are
zero.

With (6.2), (6.5) and (6.7) the beam amplitudes are completely determined except for
the phase arg a0. Careful examination of more sophisticated versions of Hermiticity, such
as the grating analogue of the optical theorem (unitarity of the scattering matrix), even those
involving evanescent waves (Brown et al 1982), also fail to determine this phase.

The regularization (4.11), with x replacing φ and ε < 1, fails too, in an interesting way,
as does the analogous regularization described at the end of section 4. When ε < 1, (4.11)
leads to a three-term recurrence relation whose associated tridiagonal matrix can be inverted,
and the resulting an converge as the matrix size increases. But the convergence gets worse as
ε → 1, and fails when ε = 1. For this case, where the recurrence relation is

an−1(1 − rn−1) + 2anrn − an+1(1 + rn+1) = 2δn,0 − 2δn,1, (6.10)

the convergence is illustrated in figure 12. This shows the evanescent amplitudes oscillating
as they decay; the oscillations are self-similar, and increasing N produces graphs that look
similar. In fact the oscillations are artefacts of the truncation: as N increases, the oscillations
for fixed n get weaker. We have seen this numerically, and a long analytical argument, not
given here and involving a conserved quantity analogous to (4.13) for the circle, shows that
matrix inversion gives arg a0 proportional to 4k log N , and therefore truncation dependent.

This failure to determine arg a0 suggests that reflection from the grating is not well
determined by the boundary condition (1.4). That the situation is exquisitely delicate is shown
by the case of oblique illumination, where the incident beam has x dependence exp (in0x),
and the diffracted beam amplitudes are denoted a(n, n0) (normal incidence is n0 = 0).
Lengthy but elementary analysis (again not given here) shows the following. For n0 < 0, all
amplitudes can be determined unambiguously; the only nonzero an are those with n0 � n � 0.
For n0 > 0, the reflected waves for n > 0 can be determined explicitly, that is without
phase or other ambiguity, and their amplitudes are nonzero only for n � n0, meaning that for
n0 � 2 there are no diffracted beams with n = 1,2, . . . , n0 − 1. The amplitudes with n � 0
cannot be determined explicitly, but they can all be expressed in terms of the zero coefficient
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Figure 13. Wavefunction |ψ(x, 0)| in the grating, calculated from the series (1.6) including terms
|n| < N with coefficients determined by the matrix inversion of (6.10), truncated at N × N, for
k = 5.2: (a) calculated with N = 500 shows the whole range −π � x �π ; note that |ψ | is close to
unity, and the polylogarithm singularity is almost indiscernable; the magnification of the box near
the origin (b), calculated with N = 5000, shows the polylogarithm singularity clearly.

a0,n0 (representing normal reflection). This in turn can be simplified by using reciprocity,
conveniently expressed in the form (Brown et al 1982)

rnan,n0 = rn0a−n0,−n, (6.11)

representing time reversal symmetry. Reciprocity enables all a0,n0 to be expressed in terms of
a0,0, that is our previous a0, whose phase remains undetermined.

Nevertheless, even for normal incidence the wavefunction (1.6) can still be calculated by
inversion of the truncated matrix, and the slow convergence again generates a polylogarithm
singularity at the D point x = 1. However, unless k is very small the wave on the boundary is
almost constant (because a1 is very close to unity and all other an are very small). Therefore
very high magnification is required to display the singularity, as figure 13 illustrates. (The
ambiguity in arg a0 does not seem to affect the form of this singularity.)

7. Concluding remarks

Our main result has been the identification of an isolated D point, whose neighbourhood
κ → −∞, as a singularity, and the elucidation of some of its consequences. This was
unanticipated, because the superficially more singular situation, of the entire boundary
consisting of D points, is the commonplace and unproblematic Dirichlet boundary condition.
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Our exploration of varying boundary conditions suggests several areas for further
investigation. Most urgent is a fuller understanding of the D singularity, in particular its
role in generating a spectrum for the circle billiard and the physical reason why it implies
a failure to determine arg a0 for the grating. Here we admit that our arguments have been
non-rigorous, and could benefit from the attention of mathematicians.

For billiards with no D points on the boundary, as in the case studied in section 5 and
(4.11) with ε < 1, the spectrum is discrete and appears to be nonintegrable but only weakly
so. It would be interesting to understand this fully, and in particular see if it can be explained
by local nonspecular semiclassical reflection as conjectured in section 5. And calculation of
more levels than the lowest 122 would enable more precise identification of the statistics.

For gratings without D points, there is no ambiguity in determining the beam amplitudes,
and some choices of κ(x) could lead to a class of exactly solvable models. It would be
interesting to know if boundary-varying gratings could be implemented using metamaterials.

We have explored the simplest cases, but there are several obvious variants. Instead
of the grating, we could consider the exterior problem of scattering of waves incident on
the circle billiard from outside, especially in the context of inside–outside duality (Eckmann
and Pillet 1995, Dietz et al 1995). And instead of the interior circle billiard, we could
consider bound states in the truncated cylinder {0 � x � 2π}, {0 < y < 1}, with the varying
boundary condition specified by a periodic κ(x) at y = 0 and some other boundary condition at
y = 1 (e.g. Dirichlet, or Neumann, or that specified by κ(x), or the twisted case κ(−x)). These
variants are interesting, but our examination of some of them indicates that the fundamental
phenomena associated with the D singularity are the same as in the cases we describe here.
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Appendix A. Polylogarithm asymptotics

First, we seek to approximate the polylogarithm on the unit circle. Following the analogous
procedure (Berry 1986, Berry and Keating 1990) for the Riemann zeta function, suggested
by the special case (4.10), the first step is to truncate the defining sum at the Nth term, and
represent the tail in terms of the Poisson summation formula:

Li1−2ik(exp(iφ)) =
N∑

n=1

1

n1−2ik
exp(inφ)

+
∞∑

m=−∞

∫ ∞

N+ 1
2

ds

s
exp {i(φ − 2πm + k log s)} . (A.1)

For large k, the integrals are oscillatory, so we can apply the method of stationary phase. The
stationary points are

sc = 2k

2πm − φ
. (A.2)
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The simplest procedure is to include only those terms m for which sc lies in the range of
integration. This restricts the sum according to

sc > N if
1

2
(1 + sgn φ) � m <

k

πN
(0 < φ � π). (A.3)

The central feature, giving rise to the singularity at φ = 0, is that the m = 0 term contributes
if φ < 0 but not if φ > 0. The most economical representation, in which both series in (A.1)
have the same number of terms, is obtained by choosing N = int

√
(k/π).

Application of the stationary phase gives the formula

Li1−2ik(exp(iφ)) ≈
int

√
k/π∑

n=1

1

n1−2ik
exp(inφ)

+ �(2ik) exp

(
1

2
k

) int
√

k/π∑
m= 1

2 (1+sgn φ)

(2πm − φ)−2ik. (A.4)

Explicitly, the singularity given by the m = 0 term is

exp{−2ik log|φ|} �(−φ), (A.5)

which is precisely of the form (3.7) conjectured semiclassically.
Inside the unit circle, the procedure is similar, but with the crucial difference that the

stationary point in the m = 0 integral moves smoothly past the end point as φ passes through
zero. Therefore this integral must be approximated more carefully. The result is the more
general approximation

Li1−2ik(w) ≈
int

√
k/π∑

n=1

(
wn

n1−2ik
+ �(2ik)(−log w + 2π in)−2ik

)

+
1

2
�(2ik)(− log w)−2ik Erfc(S(w)), (A.6)

in which the argument is

S(w) = exp

(
−1

4
iπ

)[
log w

2
√

π
+

√
k exp(i arg log w)

]
(|arg w| < π). (A.7)

As figure 14 illustrates, these approximations capture the singularity that develops at φ = 0 as
r approaches 1.

Appendix B. Coalescing D points

For a circle billiard with coalescing D points, we use the model (5.17), in which ε = +1
represents a singularity with κ → +∞ and ε = −1 represents κ − ∞. It is convenient to
represent the wave in the form (slightly different from (1.5))

ψ(r, φ) =
∞∑

n=−∞
bn exp(inφ)

Jn(kr)

J ′
n(k)

. (B.1)

Then the recurrence relation for the coefficients is

bn+1 + bn−1 = 2

(
2ε

ρn

+ 1

)
bn ≡ 2Anbn, (B.2)

in which ρn is defined by (4.2).

21



J. Phys. A: Math. Theor. 41 (2008) 135203 M V Berry and M R Dennis

–3 –2 –1 0 1 2 3
–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–3 –2 –1 0 1 2 3

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–3 –2 –1 0 1 2 3

–2

–1

0

1

2

–3 –2 –1 0 1 2 3

–2

–1

0

1

2

–0.4 –0.2 0.0 0.2 0.4

–1.0
–0.5

0.0
0.5
1.0
1.5
2.0
2.5

–1.0

–0.5

0.0

0.5

1.0

1.5

po
ly

lo
g

(a)

(b)

(c)

(d)

(e)

( f )

–0.4 –0.2 0.0 0.2 0.4

Figure 14. Polylogarithm Li1−2ik(r exp(iφ)) (full curves) and approximation (A.6) and (A.7)
(dashed curves), with Re(Li) thick and Im(Li) thin. (a) k = 5, r = 0.9; (b) k = 5, r = 1;
(c) magnification of (b); (d) k = 20, r = 0.95; (e) k = 20, r = 1; ( f ) magnification of (e). For r =
1 the approximation (A.4) has been used.

The large n behaviour of the solution of this difference equation is conveniently given
by the WKB technique of Dingle and Morgan (1967), based on writing bn+1 + bn−1 =
2 cosh

(
∂
∂n

)
bn and expressing bn as the product of a fast-varying exponential and a slowly-

varying amplitude. This gives, for the two elementary solutions,

bn ≈ exp
{± ∫ n dn′ cosh−1 An′

}
(
A2

n − 1
)1/4 . (B.3)

For large n, approximating ρn by (4.6) leads to

bn ≈
(εn

4

)1/4
exp(±4

√
εn). (B.4)

This reveals the profound difference between ε = +1 and ε = −1. With the positive sign,
the asymptotic coefficients are growing or decaying exponentials, and imposing the condition
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that the growing exponential is absent generates a discrete spectrum in the familiar way.
In this case, κ(φ) → + ∞ as φ → 0±, so the negative neighbourhood of the D point, which
we previously found to be implicated in the appearance of the continuous spectrum, does not
exist.

With the negative sign, the asymptotic coefficients oscillate, and the spectrum appears
continuous. In this case, κ(φ) → −∞ as φ → 0±, so the neighbourhood of the D point is
negative on both sides.

Numerical explorations confirm these conclusions, in particular the accuracy of the
asymptotic formula (B.4) for both ε = +1 and ε = −1.
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